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Abstract We have considered convective instability in a plane of a disk. In this case
nonaxisymmetric perturbations are unstable, and the reason of a convection
is connected with a radial non-homogeneity of thermodynamic parameters in
quasi-Keplerian disk. On the basis of the linear analysis of stability in WKB-
approximation the borders of stability are received. The hydrodynamical model
of a non-stationary gas disk in the gravitational field of dot mass is constructed.
We have studied nonlinear dynamics of convective unstable perturbations
because of radial non-homogeneous entropy, neglecting effects of cooling and
viscosity. The opportunity of formation of spiral-cellular structure of convective
perturbations with shock waves is shown here.
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1. Problem of a convection in accretion disks

Within the framework of accretion disk (AD) standard α-model (Shakura &
Sunyaev) there is a number of theoretical problems and problems connected
with the explanation of the observation data. The latter is concerned with the
explanation of low luminosity of X-ray binary system and active galactic nu-
cleus with black holes (see the review (Narayan 2002) and references there).
One of the most investigated objects of such type is the source in the centre to
Galaxy Sgr A∗ (Melia & Falcke). The reduction of luminosity is provided in
so-called ADAF-models (advection-dominated accretion flows) (Abramowicz
et al. 1995). They are much hotter and Eddington luminosity is reached at
smaller rate of accretion.

The beginning of research of ADAF-models was put by the work, (Narayan
& Yi 1994), in which self-similar solving of stationary accretion are con-
structed. The radial advection stream acts as the basic mechanism of energy
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transferring, and the transference of the angular moment is provided by α-
viscosity. The structure of flow appears to be close to spherical and the rota-
tion of gas essentially differs from Keplerian’s law. At the presence of strong
viscosity (α >∼ 0.3) numerical modelling yields results which are similar to
ADAF-models (Igumenshchev & Abramowicz 2000). However in calculations
with small value of parameter α flows are formed with strong turbulence be-
cause of development of convective instability, and this instability essentially
changes the spatial structure of current (Stone et al. 1999; Igumenshchev &
Abramowicz 2000). Such models are called as “convection-dominanted accre-
tion flows” (CDAF) (Balbus & Hawley 2002).

The major properties of the given models are the generation of convective
turbulence, transference of the angular moment to the centre, which compen-
sates a stream of the angular moment outside due to viscosity (or, for exam-
ple, due to magnetic-rotation instability), together with a stream of thermal
energy along radius. Numerical modelling shows the low rate of an accre-
tion and a significant stream of energy outside due to a strong radial convec-
tion. The fundamental problem of models CDAF is the presence of a stream
of the angular moment into center (Balbus & Hawley 2002). The basic res-
ults are obtained in frameworks of axisymmetric models (Igumenshchev &
Abramowicz 1999; Stone et al. 1999; Balbus & Hawley 2002). The transition
to three-dimensional ADAF-models, apparently, does not change decisions of
axisymmetric calculations in qualitative sense (Igumenshchev et al. 2000). It
is necessary to note, that the important result concerning with convective trans-
ference of the angular moment inside was revealed in the models of the rotating
stars with a convective nucleus (Bisnovatyi-Kogan et al. 1979).

The presence of magnetic field (MHD CDAF) essentially can change the
properties of flow, and, in particular, the convection can result in a stream of
the angular moment as inside, and periphery along radial coordinate, and,
apparently, it is connected with the influence of magnetic-rotation instability
(Igumenshchev 2002; Balbus & Hawley 2002). The model of gas axisymmet-
ric thick disk with the presence of magnetic field shows, that perturbations with
the wave length exceeding a vertical scale of a disk, remain convective unstable
(Narayan et al. 2002).

It should be noted that the internal radiative-dominant areas of AD can
be unstable concerning to the vertical convection and the disk which is thin
enough (Bisnovatyi-Kogan et al. 1979). The nonlinear stage of such convec-
tion in thin axisymmetric AD is investigated for the standard model radiative-
dominant zone for r − z-perturbations in work (Agol et al. 2001).

Apparently, the fundamental problem of the AD is the question on nature
of turbulent viscosity (Bisnovatyi-Kogan & Lovelace 2002) and, despite of
the great progress, active investigation of turbulence in accreting systems is
only at the beginning, and the basic results are still more ahead. There is
a point of view, that turbulence in the AD is caused by the development of
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hydrodynamical instabilities at a nonlinear stage and the analysis of unstable
flows is an important problem.

In this article we are going to discuss the consequences of development
of convective instability in planes of a nonaxisymmetric disk. In this case
the reason of nonaxisymmetric convection is connected with the radial non-
homogeneity of thermodynamic parameters in quasi-Keplerian disk. We have
analyzed the nonlinear dynamics of convective unstable perturbations because
of the radial non-homogeneity of entropy. The opportunity of formation of the
convective weak turbulence is shown. Convective intermixing in the plane of a
disk can result, on the average, to radial accretion without taking into account
the action of viscous forces.

2. Basic equations

The equations describing dynamics enough of a thin gas disk should be
written down, in the following form:
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where σ is surface density, p — surface pressure, u and v are radial and azi-
muthal components of the velocity, respectively, Φ is potential, and the last
component in (2) is connected with the averaging of the equations along ver-
tical coordinate (Gorkavyj & Fridman 1994; Khoperskov & Khrapov 1999)
and D depends on the features of vertical distribution of gas in a disk, Ω2

z =
∂2Φ
∂z2 |z=0

and in case of Newton’s potential for mass M1 we have Ωz = ΩK =√
GM1/r3. The equation on pressure should be added to the system of equa-

tions (1)–(3)
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where pg and pr are gas pressure and radiation pressure, γ is an adiabatic index,
and the right part appears from the averaging on z-coordinate and the value of
parameter c is expressed through D.
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Figure 1. The borders of convective linear instability. a) The curve 1 — r/LΩ = r/Lz =
−3/2, γ = 5/3, Λ = 10; 2 — unrotative atmosphere (8); 3 — for case r/Lz = 0. b) 1 —
γ = 5/3, 2 — γ = 4/3, 3 — γ = 1.01 for r/LΩ = r/Lz = −3/2, Λ = 10.

3. Linear stability analysis

Let’s consider a stationary equilibrium non-homogeneous disk without
radial motion. The equation (2) gives the balance of radial forces:

v2
0

r
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= 0 , (5)

where we shall mark equilibrium parameters by an index “0”. The two last
terms give the small contribution to balance, but the account of pressure gra-
dient p0(r) is necessary for the development of convection in disk plane. It is
convenient to enter specific equilibrium force, for which, taking into account
the equation (5), we shall write down
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0
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. (6)

For equilibrium parameters f = {σ0, p0, v0, . . .} we shall use the scales of
radial non-homogeneity Lf = (d ln(f)/d r)−1.

Let’s consider the dynamics of nonaxisymmetric perturbations, taking into
account the non-homogeneous distributions σ0(r), p0(r), Ω = v0(r)/r =
Ωz(r), and present all the functions as f(r, ϕ, t) = f0(r) + f̃(r, ϕ, t). We
linearize the equations (1) – (4) concerning the perturbing functions f̃ with the
account (6). Within the framework of WKB-approximation it is counted that
f̃ = f1 · exp{−i ωt + i kr + i mϕ}. Thus, we have the system of four linear
algebraic equations concerning amplitudes f1. The condition of existence of
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untrivial decisions for this system results in the dispersion equation of 4-th deg-
ree concerning frequency ω. If we consider separately the radiative-dominant
disk pr � pg or the other case pr � pg, then the dispersion equation results
in:
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where ω̂ = ω−mΩ, Γ = 1+2(γ − 1)/(γ +1) plays a role of a flat parameter

of an adiabatic curve, s = kϕ/
√

k2 + k2
ϕ defines the degree of perturbations

nonaxisymmetry, kϕ = m/r. In the case of pr � pg it is necessary to consider
γ = 4/3. In a limit of Ωz = const, the equation (7) was received in work
( Morozov & Khoperskov 1990).

In a limit of adiabatic model p0

σΓ
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z
= const, the order of the equation (7)

reduced is lowered, as the entropy mode degenerates into ω̂ = 0. The equa-
tion (7) describes two high-frequency acoustic modes for which it is possible
approximately to write down ω̂2 ∼ ∂e2 + k2c2

s, and two low-frequency modes
(entropy and vortical).

Formal transition in (7) to the unrotative medium Ω = 0 and Ωz = const
gives ω2 = 4 s2
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And it, in accuracy coincides with the condition of convective stability in the
non-homogeneous unrotative atmosphere.

Thus, the equation (7) allows to define borders of convective instability with
the account of differential rotation (1/LΩ �= 0) and the finite thickness of disk
in the main approximation (1/Lz ≡ d ln Ωz/dr �= 0). Let’s write down (7) for
low-frequency waves (|ω2| � ∂e2):
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account the estimation for half-thickness of disk h ∼ cs/Ω, parameter Λ can



222 PROGRESS IN STUDY OF ASTROPHYSICAL DISKS

Figure 2. Contours of surface density σ/σ0 at two different moments of time t1 = 15000
(a), t2 = 41000 (b).

accept values from Λ � 1 in a long-wave limit, up to Λ <∼ 100 for perturba-
tions whose wave length is comparable to thickness of the disk. For many
stationary models of AD it is possible to accept the power characteristic of
equilibrium parameters of a disk on radial coordinate (Shakura & Sunyaev):
r/Lf = const. The condition Im(ν) > 0 gives the unstable solutions, consid-
ered in work (Morozov & Khoperskov 1990) in a case r/Lz = 0.

In fig. 1 on a plane of parameters r/Lσ and r/Lp the borders of convective
instability determined from a condition Im(ν) = 0, for base model r/LΩ =
r/Lz = −3/2, γ = 5/3, Λ = 10 are represented. Here for comparison there
are borders of stability for the unrotative medium for which, the balance is
provided only by the external force and the pressure gradient, and for model
r/Lz = 0. As we see, the rotation and the finite thickness of disk appreciablly
change the conditions of convective instability. And, depending on values of
Lσ and Lp, the zones of stability on planes (r/Lσ, r/Lp), can both be increased
and decreased. For equilibrium distributions with r/Lσ < 0 and r/Lp < 0
differential rotations and final thickness of disks are stabilizing factors.

Influence of parameter γ on the condition of convective instability is shown
in fig. 1a. At any values of r/Lσ with diminution of γ critical value |r/Lp|
becomes less. This effect is corresponded to criterion (8). The parameter Λ
characterizes a spatial structure of perturbations. Large values of the para-
meter Λ � 1 are reached for short-wave waves in radial direction k >∼Ω/cs

and Λ is higher for perturbations with large azimuthal number m. It is nec-
essary to emphasize, that from the point of view of the equations (9), (7) the
most unstable waves are the extremely nonaxisymmetric perturbations s = 1
(as Im ω ∝ s), for which the made approximations are broken certainly. The
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Figure 3. Fields of velocity in a disk plane for the model represented on fig. 2: (a) —
t1 = 15000, (b) — t2 = 41000. The length of arrows is proportional to the logarithm of
the velocity modulus.

borders of convective instability in disk plane depend on the non-axisymmetry
degree of perturbations only through parameter Λ(Θ). The parameter Λ influ-
ences on model with r/Lp > 0 most of all. Thus models with r/Lp > 0 can
be convective unstable only concerning small-scale disturbations.

The presence of extreme case (8) affirms the fact, that the physical mecha-
nism causing the growth of perturbations with the time, is similar to classical
convective instability at presence of a gradient entropy, which is co-directed
to external force. The Archimed’s force of buoyancy leads to the convective
motion. However, in our case the effects of rotation play the important role.
The basic question demanding deep analyze and studying is the influence of
strong differential rotation on convective cells at a nonlinear stage.

4. Nonlinear stage of a radial convection

Let’s consider the problem on influence of strong differential rotation on
convective cells. For solving the equations of hydrodynamics we use the
method TVD-E, having limited by Ωz = const.

Our model has free parameters: δp = r/Lp, δσ = r/Lσ, γ, M = rΩ/cs.
At the initial moment of time we set the power characteristics of density and
pressure (r/Lp = const, r/Lσ = const). Dimensionless coordinates and
time: t = 1 — a cycle time on radius r = 1 should be used. On the external
border of settlement area rex conditions of free course of substance are used.
On the internal border rin the conditions of solid wall are used, considering,
that the disk reaches the surface of accreting stars in case of a neutron star or



224 PROGRESS IN STUDY OF ASTROPHYSICAL DISKS

(a) 0
(b)

Figure 4. The radial distributions of relative density σ/σ0. (a) M = 10. The perturbations
differ by azimuthal structure: 1 — m = 4, 2 — m = 8, 3 — m = 12. (b) For fixed m = 8
models differ by the Mach number M: 1 — M = 5, 2 — M = 10, 3 — M = 15.

the white dwarf. Let’s consider only a limit pgas � prad, that is carried out at
rin � rG (rG = 2 GM/c2 — gravitational radius).

We are going to analyze the dynamics of the waves which are differentiated
by azimuthal number m, depending on initial spatial structure of perturbations.
For the formation of the certain harmonic m the sector of a disk on a corner ϕ
is considered only. In this case along azimuthal coordinate periodic boundary
conditions are used.

Structure of a convection at a nonlinear stage. If the equilibrium condition
which is determined by functions p0(r) and σ0(r) provides stability of a disk
according to (7) (Im(ω) = 0) the fact is that the increasing of perturbations
in due course does not occur in numerical models. Control calculation in case
of r/Lp = −2, r/Lσ = −1 shows, that on an extent t ≤ 105 at the presence
of initial perturbations with initial amplitude <∼ 2% their further increase does
not occur.

Let’s consider the model with r/Lp = −3/2 and r/Lσ = −1/2, γ = 5/3
which gets into the unstable area according to (9). Regardless of amplitude of
initial perturbation, we obtain typical spiral-cellular wave structure.

In fig. 2 there are contours of ratio of density σ(r, ϕ) to equilibrium value
σ0(r) for two moments of time t1 = 15 000 and t2 = 41 000. At the initial
stage typical convective cells (see fig. 2 a) with small relative amplitude of
surface density |σ − σ0|/σ0 <∼ 0, 05 are formed. With time the increasing of
amplitude and the complication of spatial structure because of the differential
rotation of disk take place (see fig. 2 b).
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Figure 5. Dependences of the maximal value of the perturbed density σ̃max/σ0 for a convec-
tive cell from time for various models: (a) M = 10, 1 — m = 8, 2 — m = 12, 3 — m = 20.
(b) For fixed m models differ by number of the Mach M: 1 — M = 10, 2 — M = 20, 3 —
M = 40.

The law of rotation differs from Keplerian ΩK just a little. With the increas-
ing of M these deviations are decreasing. Since the full radial component of
velocity u and the perturbation of azimuthal velocity ṽ = v − v0 are rather
small in comparison with the equilibrium velocity of rotation v0 � rΩK it is
more convenient to consider only the perturb components but not a full field of
velocities. In fig. 3 the vector field of velocity perturbations is represented in a
plane of a disk. The field of velocities demonstrates vortical character of flow.

The spatial structure of perturbation can be characterized by radial wave
number k and by azimuthal number m, which are independent within the
framework of the linear analysis. The radial structure of unstable perturba-
tions at the nonlinear stage is defined by parameters of model (M, m, δp, δσ,
γ), and we can change azimuthal number m, varying the initial perturbations
along angle ϕ. In fig. 4 it is visible, that with the increasing of azimuthal num-
ber the perturbations become more small-scale in the radial direction as well.
There are similar effect in the case of increasing number of the Mach (M).

It follows from the linear analysis, that the increment of instability is pro-
portional Im ω ∝ m, and as a whole this fact is affirmed at an initial stage of
evolution of perturbations. In fig. 5 time dependences of amplitude of relative
density for the chosen convective cell for various m and M are shown. During
the typical times t(sat) � 350M the increasing of perturbations up to much
nonlinear stage, close to saturation, takes place. The disturbance amplitude
with small azimuthal number arises slowly.

At the non-linear stage of instability the spiral shock waves (SW) are formed
in a disk, and it is caused by supersonic flowing of gas onto the convective cells.
In fig. 6 the structure of shock waves is shown. The distributions of (div�v)2
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most evidently demonstrates positions of fronts of shock waves in fig. 6. Radial
structure of parameters of gas at the fixed values of an azimuthal angle ϕ are
represented in fig. 7. The shock wave is formed on the back edge of the spiral
density perturbation, and the wave of underpressure is observed on the front
edge.

Figure 6. Contours of the relative density and (div�v)2 for the two different moments of the
time.

Is viscosity necessary for an accretion? The result of convection in disk
plane is gas falling onto the gravitational center, on average.

In fig. 8 time dependences of the current of mass Ṁ = r
∫ 2π
0 σu dϕ are

represented on three various radiuses. Non-stationary character of accretion is
connected with the absence of the stationary solution because of used boundary
conditions in radius rin. The condition of solid wall on inner boundary results
in the accumulation of mass in a disk that has an effect for other parameters
as well (fig. 9). The current of the angular moment is directed outside, that



Computer Modeling of Gas Quasi-Keplerian Disk 227

f/f

pressure

density
sound

r

speed

azimuthal
velocity

radial
velocity

Figure 7. The radial dependences σ/σ0, p/p0, cs/cs0, u (left axis), v/v0 (right axis) for the
azimuthal angle ϕ = 0 at time t = 2 · 104. The positions of shock waves are indicated.
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Figure 8. a) The dependences Ṁ from time through three various circles of the fixed radius.
b) The time dependences of integral values (mass M , angular moment L and specific angular
moment l = L/M ) in calculated region of numerical model.

appears to be the important distinctive feature from models CDAF (Balbus &
Hawley 2002). Such received direction of the current affirms, that rotation is a
source of free energy (8).

In fig. 9 the radial distributions of relative sound speed in a disk at the dif-
ferent time moments are shown. Monotonous increase of cs in due course
points out to the heating of a disk as a result of gravitational energy release.
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Figure 9. The dependence cs(r)/cs0(r) at the different time moments (the value cs is re-
ceived as the result of averaging on a angle ϕ, and cs0 is initial equilibrium value): 1 —
t1 = 30 000, 2 — t2 = 35 000, 3 — t3 = 40 000, 4 — t4 = 45 000, 5 — t5 = 50 000.

The increasing of temperature in the internal part of a disk is higher, than in
periphery.

In summary, it should be noted, that the received results, made in frame-
works of quasi-Keplerian disk, are kept, on the whole, in case of rotation laws
with r/LΩ > −3/2. In the appendix to the gas subsystems of disk galaxies,
the values of parameter r/LΩ lay from 0 (close to solid-body rotation in the
central zone) up to −1, and the curve of plateau-type is characteristic for the
majority of galaxies in the most part of a disk.

5. Discussion of results

We have studied nonlinear dynamics of convective unstable perturbations
because of radial non-homogeneity of entropy, neglecting effects of cooling
and viscosity. Unlike numerous works on studying of convection in a plane
r − z, we have shown principled opportunity of development of convective in-
stability in thin quasi-Keplerian disk, where vertical motion (if they are present)
are not a reason of the convection.

The opportunity of formation of the weak convective turbulence in charac-
teristic times ∼(103÷104) τ in the central zone of disk (τ — Keplerian period
on radius 3rg = 6 GM/c2) is shown. The rate of convection generation is
increased for the peripheral region of disk. The convective intermixing in disk
plane can result in average radial current of mass without taking into account
action of viscous forces.

The convective instability considered here in a plane of a disk is not con-
nected with the fact of gas rotation, as in case of fluid motion between two
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rotating cylinders (Taylor flow), that results in the formation of Taylor vortex.
The opportunity of convection development in the disk plane is kept and in the
case of solid-body rotation L−1

Ω = dΩ
Ω dr = 0, and it can have interest for mod-

els of gas disks of galaxies. The convection conditions can be fulfilled for the
curve of rotation of galactic gas disks such as a plateau V = rΩ = const. In
contrast to the convection in the appendix to stars (Brun & Toomre 2002), the
degree of differential rotation in the AD are much higher. The physical reason
of such instability is the decrease of specific entropy with radius. The role of
external force which is required for convection development is played by the
value g � ∂Φ

∂r −rΩ2, and in the case of ds0
dr < 0 it is necessary g > 0. It should

be noted, that instability is possible even at g < 0 in the case of ds0
dr > 0.
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