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In this paper, we study the propagation of ultrashort optical pulses, which can be re-
garded as discrete solitons in this case, when the medium with carbon nanotubes (CNTs),

has spatially modulated refractive index. As a result we were able to obtain the effective

equation, which represents an analog of the classical sine-Gordon equation. A detailed
analysis of the dependence on various parameters of the problem has been performed.
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1. Introduction

Nowadays we observe an increased interest in the nonlinear propagation of light

in discrete waveguide structures. This is due to the possibilities of practical use

of nonlinear optical effect and to the fact that the propagation of light beams in

these structures is similar to the motion of an electron in a crystal lattice. We can

also highlight the existence of forbidden and allowed bands, as well as the fact that

the pulse propagates with the group velocity which is much lesser than the speed

of light in vacuum. Similar physical phenomena are observed in other systems,

e.g. in semiconductor superlattices, biological molecular structures, Bose–Einstein

condensates with a periodic potential etc.1
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The first theoretical justification of the possibility of nonlinear light localization

in periodic structures of coupled optical waveguides has been given in Ref. 2, pub-

lished back in 1988. However, the experimental confirmation of the existence of such

spatially localized states, also known as discrete solitons, has been done 10 years

later.3–5 The latter study dealt with waveguide grates based on gallium arsenide

(GaAs), bearing a positive Kerr nonlinearity. Since this breakthrough, the study

of the effects of the interaction of light beams in nonlinear periodic structures be-

came widespread. Most importantly, the nonlinearity associated with the material

properties should be properly chosen, so that it allows for at least theoretically pos-

sible existence of discrete solitons. Among various nonlinear materials, intensively

studied in recent years, especially allocated one is an ensemble of carbon nanotubes

(CNTs), whose preparing technique is now practically available worldwide.

Unique physical and chemical properties of CNTs, largely related to the peri-

odicity of the dispersion law, make them promising materials for the formation of

the nonlinear Bragg media in which the refractive index is periodically spatially

modulated (see Refs. 6–8). Because the medium has a periodically alternating re-

fractive index, the light pulse propagates therein slower than in any medium with

a fixed refractive index. This makes it possible to build the delay lines which have

important applications, e.g. in the femtosecond spectroscopy. Qualitatively, this

behavior can be understood if we assume that the light pulse undergoes reflection

and subsequent interference at the interface of different refractive index. Additional

introduction of nonlinearity in such environments leads to qualitatively new effects

(see Refs. 9–11). In particular, these systems allow for the formation of Bragg soli-

tons (gap solitons), which represent particular combinations of counterpropagating

waves thereby combining in a way that they move together with a reduced speed.

All of the above circumstances provided us an impetus for the study of the dy-

namics of propagation of extremely short optical pulses in a system of CNTs, which

can lead to new effects useful in a wide range of practical applications. Namely, they

include manufacturing of repeaters and inverters used in optical computers.

2. General Equations

Dispersion law, which describes the properties of single-walled CNT without the

Coulomb interaction between electrons on the same site (which is a good approxi-

mation for the band structure of the nanotube) reads12

E(p) = ±γ
√

1 + 4 cos(apz) cos(πs/m) + 4 cos2(πs/m) , (1)

where γ = 2.7 eV, a = 3b/2h, b = 0.142 nm is the distance between adjacent

carbon atoms, pz is the projection of the electron momentum onto the CNT and s

corresponds to the quantization along the CNT’s circumferential. Hereinafter, only

the semiconductor CNTs of zigzag type are considered. Different signs relate to the

conduction and valence bands.
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Accepting the gauge E = −∂A/c∂t, the Maxwell’s equations with account for

the dielectric and magnetic properties of the system can be written as (see Ref. 13),

∂2Ak

∂x2
− n2(x)

c2
∂2Ak

∂t2
+

4π

c
jk −

4π

c

∂Pk
∂t

= 0 . (2)

Here, the vector potential Ak, which corresponds to the electromagnetic field in the

kth layer consisting of a CNT, is considered to have the form Ak = (0, 0, Ak(x, t)).

jk is the current flowing in the kth layer consisting of CNT graphene, n(x) defines

the spatial variation of the refractive index, i.e. Bragg grating and Pk is the polar-

ization induced in the kth layer by the electromagnetic field and currents of adjacent

nanotubes. Note that we take a very simple model in which Pk = α(Ek−1 +Ek+1),

where α is the coupling coefficient, and Ek±1 stands for the electric field.

Let us write a standard expression for the current density:

jk = e
∑
pz,s

vs

(
pz −

e

c
Ak(t)

)
〈a+p ap〉 , (3)

where vs(p) = ∂Es(pz)/∂pz, p = (pz, s) and the angle brackets mean an avarage

with the nonequilibrum density matrix ρ(t):〈B〉 = Sp(B(0)ρ(t)).

It turns that the current density becomes

jk = −en0
∑
l

Dt sin

(
le

c
Ak(t)

)
,

Dt =

m∑
s=1

∫ π/a

−π/a
dpzBls cos(lpz)

exp(−εs(pz)/kBT )

1 + exp(−εs(pz)/kBT )
,

(4)

where kB is the Boltzmann constant, T is the temperature and Dls are coefficients

of the expansion of velocity and the charge carriers in a Fourier series. The latter

are explicitly given by

vs(p) =
∑
l

Bls sin(lpz),

Bls =
1

2π

∑
p

vs(p) sin(lp) .

Equation (4) can be represented in dimensionless form as

∂2Rk
∂x′2

− n2(x)

c2
∂2Rk
∂t′2

− sgn(D1) sin(Rk)−
∞∑
l=2

(
Dl

|D1|
sin(lRk)

)

+
4πα

c

∂2(Rk−1 +Rk+1)

∂t′2
= 0,

Rk =
eAk
c
, x′ = x

2e

c

√
πn0|D1|, t′ = t

2e

c

√
πn0|D1| .

(5)

Note that Eq. (5) is a generalization of the well-known sine-Gordon equation for

the case where the generalized potential is expanded in a full Fourier series. Due
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to the fact that the coefficients Dl decrease with increasing l, a possible way to

analyze the resulting system is to keep only the first nonvanishing terms of the

sum in Eq. (5), which leads to the widely used double sine-Gordon equation, which

cannot be integrated by the inverse scattering method.14

3. Numerical Results

For the numerical solution of Eq. (5), we have implemented explicit finite difference

schemes for hyperbolic equations.15 Difference scheme steps in both time and space

were iteratively decreased twice until the solution became unchanged in the eighth

decimal place. Initial conditions for the vector potential have been chosen as

At=0 = A0 exp

{
−x

2

γ2

}
exp{−β(N −Nc)2},

dA

dt

∣∣∣∣
t=0

=
2vx

γ2
A0 exp

{
− (x− vt)2

γ2

}
exp{−β(N −Nc)2} ,

(6)

where Nc is the number of central waveguide (Nc = 6), β, γ are the parameters

determining the pulse width, N is the waveguide number and t0 is the initial instant

of time.

The refractive index was modeled as

n(x) = n0(1 + α cos(2πx/χ)) .

Figure 1 shows that the pulses, in the system with a periodically varying refractive

index, are slowed down, as required by the theory and at the same time there is an

exchange of energy between the different layers of the CNT. Note that the energy

(which is proportional to the square of the electric field amplitude, represented

on the figure) is partially “pumped” from the central layer of the CNT to the

neighboring ones and back. This exchange of energy is typical for discrete solitons.

Calculations were made for the CNTs of the type (7, 0) in the case of ambient

temperature. Intel to medium pulse velocity is equal to 0.95c where c is light ve-

locity. Modulation period χ is equal to 3 ∗ 10−5 m, modulation depth α is equal to

0.05.

According to Fig. 2, this behavior is typical for Bragg gratings with different

periods and the grating period only affects the deceleration of a pulse and the

peculiarities of their form.

Similar behavior is detected for the depth of modulation of the refractive index,

as shown in Fig. 3.

As can be seen from the figures, the pulse in the central waveguide hardly

changes its shape depending on the initial pulse width, unlike the pulses in neigh-

boring waveguides. Pulses on the side waveguides have the same shape as that of

the center, but with a reduced amplitude. By changing the initial width of the cen-

tral pulse, we can control the amplitude of the electromagnetic field in the adjacent
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(a) (b)

Fig. 1. (a) The dependence of the electric field, determined by the potential, on the number of the
waveguide. Abscissa gives a number of the waveguide, N ; ordinate represents the dimensionless

value of the electric field in the presence of a Bragg grating at times: t = 2.5 ∗ 10−12 s (1-a),
t = 2 ∗ 10−12 s (2-a), t = 1.3 ∗ 10−12 s (3-a) and without a grating at times: t = 2.5 ∗ 10−12 s (4-a),

t = 2 ∗ 10−12 s (5-a), t = 1.3 ∗ 10−12 s (6-a). (b) Dependence of the electric field on time. Abscissa

gives a dimensionless time, ordinate represents the dimensionless electric field in the presence of
a Bragg grating for the following numbers of waveguides: N = 5 (1-b), N = 6 (2-b) and without

a grating: N = 5 (3-b), N = 6 (4-b).

(a) (b)

Fig. 2. (a) The dependence of the electric field, determined by the potential, on the number of

the waveguide. Abscissa gives a number of the waveguide, N ; ordinate represents the dimensionless
value of the electric field in the presence of a Bragg grating of a modulation period χ at times: t =
2.5∗10−12 s (1-a), t = 2∗10−12 s (2-a), t = 1.3∗10−12 s (3-a) and the same for a period 2χ at times:

t = 2.5 ∗ 10−12 s (4-a), t = 2 ∗ 10−12 s (5-a), t = 1.3 ∗ 10−12 s (6-a). (b) Dependence of the electric

field on time. Abscissa gives a dimensionless time, ordinate represents the dimensionless electric
field in the presence of a Bragg grating of a period χ for the following numbers of waveguides:

N = 5 (1-b), N = 6 (2-b) and the same for a period 2χ : N = 5 (3-b), N = 6 (4-b).
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(a) (b)

Fig. 3. (a) The dependence of the electric field, determined by the potential, on the number
of the waveguide. Abscissa gives a number of the waveguide, N ; ordinate represents the dimen-

sionless value of the electric field in the presence of a Bragg grating with the modulation depth
α at times: t = 2.5 ∗ 10−12 s (1-a), t = 2 ∗ 10−12 s (2-a), t = 1.3 ∗ 10−12 s (3-a); and with the

modulation depth 2α at times: t = 2.5 ∗ 10−12 s (4-a), t = 2 ∗ 10−12 s (5-a), t = 1.3 ∗ 10−12 s

(6-a). (b) Dependence of the electric field on time. Abscissa gives a dimensionless time, ordinate
represents the dimensionless electric field in the presence of a Bragg grating with the modulation

depth α, for numbers of waveguides: N = 5 (1-b), N = 6 (2-b) and with the modulation depth

2α for numbers of waveguides N = 5 (3-b), N = 6 (4-b).

waveguides. Moreover, the wider the pulse supplied to a system of CNTs, the greater

the amplitude of the neighboring pulses. This, in turn, makes it possible to control

the shape of an extremely short pulse by changing the number of CNTs’ layers and

the distance between them, which determines the coupling coefficient.
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