

ИЗУЧЕНИЕ ВЛИЯНИЯ ЛИНЕЙНЫХ РАЗМЕРОВ НАНОПЛИТЫ НА ЗНАЧЕНИЯ МОДУЛЕЙ ЮНГА И ЖЕСТКОСТЕЙ

О.Е. Глухова, С.С. Вецель

Экспериментально уже установлено, что модуль Юнга графена в 5 раз больше модуля Юнга стали. В настоящее время изучаются другие упругие характеристики графена, в частности жесткости, функция прогиба и др. Целью данной работы является определение жесткостей и построение уравнения прогиба нагруженной равносторонней графеновой однослойной нанопластинки размером ~32 нм при помощи метода линейной комбинации атомных орбиталей (ЛКАО) в рамках теории упругости тонких плит, а также определение размерного эффекта для упругих характеристик.

Ключевые слова: графен, модуль Юнга, уравнение прогиба, закон Гука, размерный эффект, метод линейной комбинации атомных орбиталей.

1. Математическая модель изгиба тонких плит

Под пластинкой будем понимать упругое и ограниченное двумя параллельными плоскостями тело. Отнесем пластинку к системе координат, которую выберем следующим образом: плоскость ХҮ совместим со срединной плоскостью, а ось z перпендикулярно. Пластинка, которая работает на изгиб, называется *пли*той. В случае с графеновым листом под двумя параллельными плоскостями понимаются виртуальные плоскости, ограничивающие монослой графена в пределах межслойного расстояния в графите 0,34 нм. Срединной плоскостью ХҮ примем плоскость, проходящую через центры атомов. Таким образом, задача об изгибе графена (наноплиты) может, в рамках указанного приближения, рассматриваться как трехмерная задача теории упругости.

Теория равновесия плиты, защемленной по краям, построена на двух предположениях: 1) прямолинейные отрезки, которые в недеформированном состоянии пластинки были нормальны к ее плоской срединной поверхности, при изгибе остаются прямолинейными и нормальными к изогнутой срединной поверхности (гипотеза прямых нормалей) и не изменяют своей длины; 2) нормальное напряжение σ_ в сечениях, параллельных срединной плоскости, есть величина малая по сравнению с напряжениями в поперечных сечениях – σ_{x} , σ_ν, σ_{νν} (первая тройка напряжений).

Уравнения равновесия плиты записываются в виде:

$$\begin{cases} \frac{\partial \sigma x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0\\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = 0\\ \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma z}{\partial z} = 0 \end{cases},$$

$$\sigma_x, \sigma_y - гла$$

 $\tau_{xy} - кас$

где

вные напряжения; сательное напряжение. Уравнения закона Гука [2]:

$$\begin{cases} \varepsilon_x = a_{11} \ \sigma_x + a_{12} \ \sigma_y + a_{13} \ \sigma_z + a_{16} \ \tau_{xy} \\ \varepsilon_y = a_{12} \ \sigma_x + a_{22} \ \sigma_y + a_{23} \ \sigma_z + a_{26} \ \tau_{xy} \\ \varepsilon_z = a_{13} \ \sigma_x + a_{23} \ \sigma_y + a_{33} \ \sigma_z + a_{36} \ \tau_{xy} \\ \gamma_{yz} = a_{44} \ \tau_{yz} + a_{45} \ \tau_{xz} \\ \gamma_{xz} = a_{45} \ \tau_{yz} + a_{55} \ \tau_{xz} \\ \gamma_{xy} = a_{16} \ \sigma_x + a_{26} \ \sigma_y + a_{36} \ \sigma_z + a_{66} \ \tau_{xy} \end{cases}$$

Вестник ВолГУ. Серия 10. Вып. 5. 2011

2011

ТЕХНИЧЕСКИЕ ИННОВАЦИИ

Здесь a_{11} , a_{12} , ..., a_{66} – упругие постоянные (коэффициенты деформации); ε_y – относительная деформация вдоль главной диагонали гексагональной решетки графена; ε_x – относительная деформация вдоль меньшей диагонали, перпендикулярной главной диагонали гексагональной решетки графена; γ_{xy} – относительный сдвиг.

На основании второго предположения теории Кирхгофа в уравнениях закона Гука σ_z можно положить равными нулю и рассматривать два первых и шестое уравнения представленной выше системы:

$$\begin{cases} \varepsilon_x = a_{11} \ \sigma_x + a_{12} \ \sigma_y + a_{16} \ \tau_{xy} \\ \varepsilon_y = a_{12} \ \sigma_x + a_{22} \ \sigma_y + a_{26} \ \tau_{xy} \\ \gamma_{xy} = a_{16} \ \sigma_x + a_{26} \ \sigma_y + a_{66} \ \tau_{xy} \end{cases}$$

Эту систему можно рассматривать как систему трех алгебраических уравнений относительно σ_{y} , σ_{y} , τ_{yy} . Решая ее, получим:

$$\sigma_x = (a_{22} a_{66} - a_{26} a_{26}) \varepsilon_x + + (a_{26} a_{16} - a_{12} a_{66}) \varepsilon_y + + (a_{12} a_{26} - a_{16} a_{22}) \gamma_{xy}.$$

Аналогичные уравнения получаются для σ_{v}, τ_{xv} . Если ввести обозначения

$$B_{11} = \frac{(a_{22} a_{66} - a_{26} a_{26})}{\Delta};$$

$$B_{12} = \frac{(a_{26} a_{16} - a_{12} a_{66})}{\Delta};$$

$$B_{16} = \frac{(a_{12} a_{26} - a_{16} a_{22})}{\Delta};$$

(*B_{ij}* называются приведенными коэффициентами деформации), то для напряжений можно записать:

$$\begin{cases} \sigma_x = B_{11} \varepsilon_x + B_{12} \varepsilon_y + B_{16} \gamma_{xy} \\ \sigma_y = B_{12} \varepsilon_x + B_{22} \varepsilon_y + B_{26} \gamma_{xy} \\ \tau_{xy} = B_{16} \varepsilon_x + B_{26} \varepsilon_y + B_{66} \gamma_{xy} \end{cases}$$

Введем новые постоянные:

$$D_{ij} = B_{ij} \frac{h^3}{12}, (i, j = 1, 2, 6)$$

Постоянные D_{ij} называются жесткостями: D_{11} и D_{22} – жесткости изгиба относитель-

но осей OY и OX соответственно; D_{66} – жесткость кручения; h – толщина пластинки.

В итоге основное дифференциальное уравнение теории изгиба тонких анизотропных плит имеет вид:

$$D_{11} \frac{\partial^4 w}{\partial x^4} + 4D_{16} \frac{\partial^4 w}{\partial x^2 \partial y} + + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + + 4D_{26} \frac{\partial^4 w}{\partial x \partial y^2} + D_{22} \frac{\partial^4 w}{\partial y^4} = q(x, y),$$
(1)

где q(x, y) – действующая на плиту нагрузка;

W = W(x, y) - функция прогиба пластинки.

Графен имеет два различных модуля Юнга в направлении осей Ox и Oy, а значит его можно считать ортотропным материалом. Ортотропный материал – такой материал, у которого в каждой точке имеется три плоскости упругой симметрии. Пусть три плоскости упругой симметрии совпадают с координатными плоскостями, тогда $a_{16} = a_{26} = 0$. Упростим основное дифференциальное уравнение теории изгиба тонких плит (1). Введем технические константы:

$$a_{11} = 1/E_1, a_{22} = 1/E_2, a_{12} = -\frac{\vartheta_1}{E_1} = -\frac{\vartheta_2}{E_2}, a_{66} = 1/G,$$

где E_1 – модуль Юнга вдоль оси OX, E_2 – модуль Юнга вдоль оси OY

$$E_i = \frac{2\Delta U}{\varepsilon^2 Fl};$$

- v_1, v_2 коэффициенты Пуассона вдоль осей *Ох*, *Оу* соответственно;
 - G модуль Юнга второго рода: $G = \frac{E}{2(1+\nu)}$.

Выразим приведенные коэффициенты деформации и жесткости через модули упругости:

$$\begin{split} B_{11} = & a_{22}/(a_{11}a_{22} - a_{12}{}^2) = \\ = & E_1/(1 - \vartheta_1\vartheta_2), B_{22} = E_2/(1 - \vartheta_1\vartheta_2), \\ B_{12} = & \vartheta_1 E_2/(1 - \vartheta_1\vartheta_2) = \\ = & \vartheta_2 E_1/(1 - \vartheta_1\vartheta_2), B_{16} = \\ = & B_{26} = 0, B_{66} = 1/a_{66} = G, \end{split}$$

Вестник ВолГУ. Серия 10. Вып. 5. 2011

$$\begin{split} D_{11} &= \frac{E_1 h^3}{12(1-\vartheta_1 \vartheta_2)} = D_1, \\ D_{22} &= \frac{E_2 h^3}{12(1-\vartheta_1 \vartheta_2)} = D_2, \\ D_{12} &= \frac{\vartheta_1 E_2 h^3}{12(1-\vartheta_1 \vartheta_2)} = \frac{\vartheta_2 E_1 h^3}{12(1-\vartheta_1 \vartheta_2)}, \\ D_{16} &= D_{26} = 0, \\ D_{66} &= \frac{G h^3}{12} = D_k, \\ D_3 &= D_{12}^2 + 2D_{66} = \vartheta_2 D_1 + 2D_k = \vartheta_1 D_2 + 2D_k. \end{split}$$

Уравнение для функции прогиба *W* для ортотропного материала принимает вид:

$$D_1 \frac{\partial^4 w}{\partial x^4} + 2D_3 \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_2 \frac{\partial^4 w}{\partial y^4} = q(x, y).$$
(2)

2. Размерный эффект

В нашей работе мы также рассмотрели влияние размерного эффекта на значения модулей Юнга E_x и E_y и жесткостей D_1 , D_2 , D_3 (рис. 1–5). В ходе исследования мы постепенно увеличивали линейные размеры образцов, таким образом было проведено 60 отдельных экспериментов. В результате получены экспериментальные данные, которые позволили вычислить значения соответствующих модулей Юнга и жесткостей, которые являются коэффициентами при частных производных в уравнении (2).

Рис. 1. Размерный эффект для модуля Юнга E_x (линейные размеры приведены в ангстремах, значения модуля Юнга – в ТПа)

Рис. 2. Размерный эффект для модуля Юнга E_y (линейные размеры приведены в ангстремах, значения модуля Юнга – в ТПа)

Рис. 3. Размерный эффект для изгибной жесткости *D*₁ (линейные размеры приведены в ангстремах, значения жесткости – в ТПа*м³)

Рис. 4. Размерный эффект для изгибной жесткости D_2 (линейные размеры приведены в ангстремах, значения жесткости – в ТПа*м³)

Рис. 5. Размерный эффект для крутильной жесткости D_3 (линейные размеры приведены в ангстремах, значения жесткости – в $\Pi a^* m^3$)

3. Квантовая модель графена: метод линейной комбинации атомных орбиталей

Метод ЛКАО (или метод сильной связи) был ранее представлен в [1] и модифицирован для изучения стабильности углеродных нанокластеров. В рамках данного метода полная энергия системы ионных ядер и валентных электронов записывается следующим образом:

$$E_{tot} = E_{bond} + E_{rep} + E_{vdW}.$$
 (3)

ТЕХНИЧЕСКИЕ ИННОВАЦИИ

В данном выражении E_{bond} – энергия связи структуры, которая вычисляется как сумма энергий одночастичных заполненных состояний. Эти энергии находятся в результате решения уравнения Шредингера

$$\mathbf{H} \mid \mathbf{u}_n \rangle = \mathbf{e}_n \mid \mathbf{u}_n \rangle, \tag{4}$$

где **H** – одноэлектронный гамильтониан; ε_n – энергия *n*-го одночастичного состояния.

Волновые функции $|\psi_n\rangle$ могут быть аппроксимированы линейной комбинацией атомных орбиталей (ЛКАО)

$$|\mathbf{u}_{n}\rangle = \sum_{l\delta} C_{l\delta}^{n} |\phi_{l\delta}\rangle, \qquad (5)$$

где

l – индекс квантового числа;

α – обозначает ионы.

Матричные элементы в уравнении (4) были вычислены после подбора подходящих данных, полученных из эксперимента.

Терм E_{rep} в уравнении (3) – феноменологическая энергия, которая представляет собой отталкивательный потенциал. Эта энергия может быть представлена в виде суммы парных потенциалов

$$E_{rep} = \sum_{\delta, \mathbf{B}\rangle\delta} V_{rep}(r_{\alpha\beta}), \qquad (6)$$

где

 V_{np} – парный потенциал между атомами α и β. Этот потенциал описывает взаимодействие между связанны-ми и несвязанными атомами [1]:

$$V_{rep} = V_{ij\gamma}^{0} \left(\frac{1.54}{r_{\alpha\beta}} \right)^{2.796} \times \\ \times \exp\left\{ 2.796 \left[-\left(\frac{r_{\alpha\beta}}{2.32} \right)^{22} + \left(\frac{1.54}{2.32} \right)^{22} \right] \right\}, \quad (7)$$

где *i* и *j* – орбитальные моменты волновой
функции,
$$\gamma$$
 представляет тип
связи (σ ог π). Значения пара-
метров V_{jr}^0 : $V_{ssy}^0 = -4.344$;
 $V_{sp\sigma}^0 = 3.969$; $V_{pp\sigma}^0 = 5.457$;
 $V_{pp\pi}^0 = -1.938$ eV [1].

4. Результаты

Вычислены значения модуля Юнга, модуля Юнга второго рода для графена и рассчитаны жесткости. Результаты приведены в таблице 1. Для сравнения: модуль сдвига для алмаза составляет 478 ГПа, а модуль Юнга для стали 210 ГПа. Для образцов графена микронных размеров были получены значения модуля Юнга 1,0 \pm 0,1 ТПа [3]. Это достаточно хорошо согласуется с полученными здесь результатами: с увеличением размеров образца модуль Юнга будет увеличиваться, стремясь к определенному значению (по аналогии с углеродными нанотрубками [1]).

Таким образом, зная жесткости и приведенные коэффициенты деформации B_{ij} для графена (табл. 2), мы можем записать систему для определения главных и касательных напряжений, а также и уравнение для функции прогиба W(x, y). Следовательно, зная коэффициенты уравнения для функции прогиба, можно решать задачу изгиба графеновой наноплиты.

Таблица 1

Значения модуля Юнга первого и второго рода, коэффициентов Пуассона

Модуль	Модуль	Коэффициент	Коэффициент	Модуль	Модуль
Юнга	Юнга $E_{y}(E_{2}),$	Пуассона ν_1	Пуассона ν_2	сдвига G _x ,	сдвига <i>G_y</i> ,
(E_1) , ТПа	ТПа			ТПа	ΤПа
0,852	0,671	0,92	0,062	0,39	0,32

Таблица 2

Значения приведенных коэффициентов деформации и жесткостей

B ₁₁	B ₂₂	B ₁₂	B ₆₆	<i>D</i> ₁ , ТПа * м ³	<i>D</i> ₂ , ТПа * м ³	<i>D</i> ₃ , ТПа * м ³
0,8568	0,6749	0,0620	0,3902	$2,806 * 10^{-30}$	2,211 * 10 ⁻³⁰	2,243 * 10 ⁻³⁰

ТЕХНИЧЕСКИЕ ИННОВАЦИИ

СПИСОКЛИТЕРАТУРЫ

1. Глухова, О. Е. Теоретическое изучение зависимостей модулей Юнга и кручения тонких однослойных углеродных нанотрубок «zig-zag» и «arm-chair» от геометрических параметров» / О. Е. Глухова, О. А. Терентьев // Физика твердого тела. – 2006. – Т. 48, вып. 7. – С. 1329–1335. 2. Лехницкий, С. Г. Анизотропные пластинки / С. Г. Лехницкий. – М. : Гос. изд-во технико-теорет. лит., 1957. – 463 с.

3. Changgu, Lee. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene / Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone // Science. – 2008, 18 July. – Vol. 321. – P. 385–388.

STUDY THE INFLUENCE OF THE LINEAR DIMENSIONS OF NANOPLATE ON THE VALUES OF YOUNG'S MODULUS AND HARDNESS

O.E. Glukhova, S.S. Vetsel

Experimentally found that the Young's modulus of graphene to 5 times more of Young's modulus of steel. Currently exploring other elastic properties of graphene, in particular the stiffness, Poisson's ratio, a function of deflection, etc. The purpose of this study is to determine the stiffness and the construction of the equation of deflection loaded equilateral-layer graphene plate size \sim 32 nm by the method of linear combination of atomic orbitals (LCAO) using elasticity theory of thin plates, and determination of the size effect for the elastic characteristics.

Key words: graphene, Young's modulus, stiffness equation of the deflection, Hooke's law, size effect, method of linear combination of atomic orbitals.